Spring Boot 3.5虚拟线程 + LangChain4j:构建百万级并发AI Agent系统

2025年,Java生态系统正在经历一场并发编程的革命。Spring Boot 3.5引入的虚拟线程支持,结合LangChain4j这一强大的AI框架,为构建大规模并发AI Agent系统开辟了全新的可能性。如果你还在为传统线程池的资源限制而苦恼,或者在思考如何优雅地处理数千个并发AI请求,那么这篇文章将为你提供完整的解决方案。

传统的Java应用在处理高并发场景时,往往受限于平台线程的重量级特性——每个线程约占用1MB的栈内存,10,000个线程就需要约10GB的内存开销[1]。而虚拟线程的出现彻底改变了这一局面,轻量级的特性使得应用能够轻松处理百万级的并发任务。

第一章:虚拟线程革命:重新定义Java并发

1.1 Project Loom的技术突破

虚拟线程(Virtual Threads)是Java 21中Project Loom的核心成果,它们是运行在JVM之上的用户模式线程,由Java运行时管理而非操作系统。这一设计带来了根本性的变革:

传统平台线程的局限性:

  • 每个线程预分配约1MB的调用栈
  • 线程创建和上下文切换开销巨大
  • 受限于操作系统线程数量
  • 线程池管理复杂且容易成为瓶颈

虚拟线程的革命性优势:

  • 每个虚拟线程仅占用约1KB内存
  • 创建成本极低,可以按需创建数百万个
  • 阻塞时不会占用平台线程资源
  • 完全消除了线程池的必要性

1.2 Spring Boot 3.5的集成方式

Spring Boot 3.5通过简洁的配置实现了虚拟线程的无缝集成。启用虚拟线程只需要在application.properties中添加一行配置:

1
2
# 启用虚拟线程支持
spring.threads.virtual.enabled=true

一旦启用,Spring Boot会自动重新配置核心组件:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Configuration
public class VirtualThreadConfig {

@Bean
@Primary
public TaskExecutor taskExecutor() {
return new TaskExecutorAdapter(
Executors.newVirtualThreadPerTaskExecutor()
);
}

@Bean
public TomcatProtocolHandlerCustomizer<?> protocolHandlerVirtualThreadExecutorCustomizer() {
return protocolHandler -> {
protocolHandler.setExecutor(
Executors.newVirtualThreadPerTaskExecutor()
);
};
}
}

1.3 性能基准测试:虚拟线程 vs 平台线程

基于真实的基准测试数据[2],虚拟线程在不同场景下展现出显著的性能优势:

内存+CPU密集型任务测试结果(处理1,000,000个整数数组):

并发数 平台线程耗时(ms) 虚拟线程耗时(ms) 性能提升
10,000 5,059 2,478 2.04x
100,000 34,063 24,385 1.40x
1,000,000 351,020 253,580 1.38x

CPU密集型任务测试结果(回文数检测):

并发数 平台线程耗时(ms) 虚拟线程耗时(ms) 性能提升
10,000 1,003 124 8.09x
100,000 6,560 805 8.15x
1,000,000 65,596 9,821 6.68x

这些数据清楚地表明,虚拟线程在处理大规模并发任务时具有压倒性的优势,特别是在I/O密集型或阻塞操作场景中。

第二章:LangChain4j深度解析与AI Agent架构

2.1 LangChain4j:Java AI开发的新标杆

LangChain4j是专为Java生态系统设计的AI应用开发框架,它简化了大语言模型(LLM)的集成,提供了统一的API来处理不同的AI模型和服务。

核心架构组件:

  1. ChatLanguageModel: 统一的聊天模型接口
  2. EmbeddingModel: 向量嵌入模型
  3. Tools: 工具调用系统
  4. Memory: 对话记忆管理
  5. ContentRetriever: RAG检索系统
1
2
3
4
5
6
7
8
9
10
11
<!-- Maven依赖配置 -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-spring-boot-starter</artifactId>
<version>1.0.0-beta1</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
<version>1.0.0-beta1</version>
</dependency>

2.2 AI Agent架构设计模式

根据Spring AI的最佳实践[3],现代AI Agent系统可以采用以下几种核心架构模式:

1. 并行化工作流(Parallelization Workflow)

这种模式允许多个LLM任务同时处理并聚合输出,特别适合需要处理大量独立任务的场景:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Service
public class ParallelAgentService {

@Autowired
private ChatLanguageModel chatModel;

public CompletableFuture<List<String>> processParallelTasks(List<String> prompts) {
try (ExecutorService executor = Executors.newVirtualThreadPerTaskExecutor()) {
List<CompletableFuture<String>> futures = prompts.stream()
.map(prompt -> CompletableFuture.supplyAsync(() ->
chatModel.generate(prompt), executor))
.toList();

return CompletableFuture.allOf(futures.toArray(new CompletableFuture[0]))
.thenApply(v -> futures.stream()
.map(CompletableFuture::join)
.collect(Collectors.toList()));
}
}
}

2. 编排器-工作者模式(Orchestrator-Workers)

中央编排器负责任务分解,专业化的工作者处理具体任务:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
@Component
public class OrchestratorAgent {

@Autowired
private ChatLanguageModel orchestrator;

@Autowired
private List<WorkerAgent> workers;

public String processComplexTask(String task) {
// 1. 编排器分析任务
String decomposition = orchestrator.generate(
"分解以下任务为子任务:" + task
);

// 2. 并行执行子任务
List<String> subtasks = parseSubtasks(decomposition);
List<CompletableFuture<String>> futures = subtasks.stream()
.map(subtask -> CompletableFuture.supplyAsync(() ->
findBestWorker(subtask).process(subtask)))
.toList();

// 3. 聚合结果
List<String> results = futures.stream()
.map(CompletableFuture::join)
.toList();

return aggregateResults(results);
}

private WorkerAgent findBestWorker(String subtask) {
// 根据任务类型选择最合适的工作者
return workers.stream()
.filter(worker -> worker.canHandle(subtask))
.findFirst()
.orElse(workers.get(0));
}
}

2.3 Agent状态管理与持久化

在高并发场景下,Agent状态的管理是一个关键挑战。LangChain4j提供了灵活的内存管理机制:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
@Service
public class StatefulAgentService {

private final AiService<AssistantAgent> aiService;
private final ChatMemoryStore memoryStore;

public StatefulAgentService(ChatLanguageModel model,
ChatMemoryStore memoryStore) {
this.memoryStore = memoryStore;
this.aiService = AiServices.builder(AssistantAgent.class)
.chatLanguageModel(model)
.chatMemory(memoryId -> MessageWindowChatMemory.builder()
.chatMemoryStore(memoryStore)
.maxMessages(20)
.id(memoryId)
.build())
.build();
}

@Async
public CompletableFuture<String> processRequest(String userId, String message) {
return CompletableFuture.supplyAsync(() ->
aiService.chat(MemoryId.from(userId), message)
);
}
}

interface AssistantAgent {
String chat(@MemoryId String memoryId, @UserMessage String message);
}

第三章:虚拟线程与AI调用的完美结合

3.1 I/O密集型AI服务的优化

AI服务调用天然是I/O密集型任务——网络请求、模型推理、数据库查询等都涉及阻塞操作。虚拟线程的特性使其成为处理AI工作负载的完美选择:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
@RestController
@RequestMapping("/ai")
public class AIAgentController {

@Autowired
private ChatLanguageModel chatModel;

@Autowired
private EmbeddingStore embeddingStore;

// 传统方式:受限于线程池大小
@GetMapping("/traditional/{prompt}")
public ResponseEntity<String> traditionalChat(@PathVariable String prompt) {
// 这里会阻塞一个宝贵的平台线程
String response = chatModel.generate(prompt);
return ResponseEntity.ok(response);
}

// 虚拟线程方式:可以处理数百万并发
@GetMapping("/virtual/{prompt}")
public CompletableFuture<ResponseEntity<String>> virtualChat(
@PathVariable String prompt) {
return CompletableFuture.supplyAsync(() -> {
String response = chatModel.generate(prompt);
return ResponseEntity.ok(response);
}, Executors.newVirtualThreadPerTaskExecutor());
}

// RAG查询优化
@PostMapping("/rag/query")
public CompletableFuture<RagResponse> ragQuery(@RequestBody RagRequest request) {
return CompletableFuture.supplyAsync(() -> {
// 1. 向量检索(I/O操作)
List<EmbeddingMatch<TextSegment>> matches = embeddingStore
.findRelevant(request.getQuery(), 5);

// 2. 构建上下文
String context = matches.stream()
.map(match -> match.embedded().text())
.collect(Collectors.joining("\n"));

// 3. LLM推理(网络I/O)
String answer = chatModel.generate(
buildPrompt(context, request.getQuery())
);

return new RagResponse(answer, matches.size());
});
}
}

3.2 批量处理与流量控制

在处理大规模AI请求时,批量处理和流量控制至关重要。以下是结合虚拟线程的最佳实践:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
@Service
public class BatchAIProcessor {

private final ChatLanguageModel chatModel;
private final Semaphore rateLimiter;

public BatchAIProcessor(ChatLanguageModel chatModel,
@Value("${ai.batch.concurrency:300}") int maxConcurrency) {
this.chatModel = chatModel;
this.rateLimiter = new Semaphore(maxConcurrency);
}

public CompletableFuture<List<String>> processBatch(List<String> prompts) {
return CompletableFuture.supplyAsync(() -> {
// 分批处理,避免API限流
List<List<String>> batches = Lists.partition(prompts, 300);
List<String> allResults = new ArrayList<>();

for (List<String> batch : batches) {
List<CompletableFuture<String>> futures = batch.stream()
.map(this::processWithRateLimit)
.toList();

// 等待当前批次完成
List<String> batchResults = futures.stream()
.map(CompletableFuture::join)
.filter(Objects::nonNull)
.toList();

allResults.addAll(batchResults);

// 批次间延迟,避免API限流
sleep(1000);
}

return allResults;
});
}

private CompletableFuture<String> processWithRateLimit(String prompt) {
return CompletableFuture.supplyAsync(() -> {
try {
rateLimiter.acquire();
return chatModel.generate(prompt);
} catch (Exception e) {
log.error("AI处理失败: {}", e.getMessage());
return null;
} finally {
rateLimiter.release();
}
});
}
}

3.3 响应式流处理

对于需要流式响应的场景,虚拟线程同样能够提供优秀的性能:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
@RestController
public class StreamingAIController {

@Autowired
private StreamingChatLanguageModel streamingModel;

@GetMapping(value = "/ai/stream/{prompt}",
produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public SseEmitter streamChat(@PathVariable String prompt) {
SseEmitter emitter = new SseEmitter(60000L);

// 使用虚拟线程处理流式响应
Thread.ofVirtual().start(() -> {
try {
streamingModel.generate(prompt, new StreamingResponseHandler<AiMessage>() {
@Override
public void onNext(String token) {
try {
emitter.send(SseEmitter.event()
.name("token")
.data(token));
} catch (IOException e) {
emitter.completeWithError(e);
}
}

@Override
public void onComplete(Response<AiMessage> response) {
emitter.complete();
}

@Override
public void onError(Throwable error) {
emitter.completeWithError(error);
}
});
} catch (Exception e) {
emitter.completeWithError(e);
}
});

return emitter;
}
}

第四章:高并发架构设计与资源优化

4.1 连接池与资源管理优化

在高并发AI系统中,资源管理是性能的关键因素:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
@Configuration
public class ResourcePoolConfig {

@Bean
@Primary
public HikariDataSource dataSource(@Value("${spring.datasource.url}") String url) {
HikariConfig config = new HikariConfig();
config.setJdbcUrl(url);
config.setMaximumPoolSize(200); // 虚拟线程环境下可以设置更大的连接池
config.setMinimumIdle(20);
config.setConnectionTimeout(30000);
config.setIdleTimeout(600000);
return new HikariDataSource(config);
}

@Bean
public RedisTemplate<String, Object> redisTemplate(
LettuceConnectionFactory connectionFactory) {
// Lettuce客户端天然支持异步操作,与虚拟线程完美配合
RedisTemplate<String, Object> template = new RedisTemplate<>();
template.setConnectionFactory(connectionFactory);
return template;
}

@Bean
public HttpClient httpClient() {
return HttpClient.newBuilder()
.executor(Executors.newVirtualThreadPerTaskExecutor()) // 使用虚拟线程
.connectTimeout(Duration.ofSeconds(30))
.build();
}
}

4.2 多级缓存策略

在AI应用中,智能的缓存策略可以显著降低成本和延迟:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
@Service
@Slf4j
public class CachedAIService {

private final ChatLanguageModel chatModel;
private final RedisTemplate<String, String> redisTemplate;
private final Cache<String, String> localCache;

public CachedAIService(ChatLanguageModel chatModel,
RedisTemplate<String, String> redisTemplate) {
this.chatModel = chatModel;
this.redisTemplate = redisTemplate;
this.localCache = Caffeine.newBuilder()
.maximumSize(10000)
.expireAfterWrite(Duration.ofMinutes(15))
.build();
}

@Async
public CompletableFuture<String> generateWithCache(String prompt) {
return CompletableFuture.supplyAsync(() -> {
String cacheKey = generateCacheKey(prompt);

// L1: 本地缓存
String cached = localCache.getIfPresent(cacheKey);
if (cached != null) {
log.debug("本地缓存命中: {}", cacheKey);
return cached;
}

// L2: Redis缓存
cached = redisTemplate.opsForValue().get(cacheKey);
if (cached != null) {
log.debug("Redis缓存命中: {}", cacheKey);
localCache.put(cacheKey, cached);
return cached;
}

// L3: AI模型调用
String result = chatModel.generate(prompt);

// 写入缓存
localCache.put(cacheKey, result);
redisTemplate.opsForValue().set(cacheKey, result,
Duration.ofHours(1));

return result;
});
}

private String generateCacheKey(String prompt) {
return "ai:prompt:" + DigestUtils.md5DigestAsHex(prompt.getBytes());
}
}

4.3 限流与熔断机制

基于Resilience4j的限流和熔断配置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
@Configuration
public class ResilienceConfig {

@Bean
public RateLimiter aiServiceRateLimiter() {
return RateLimiter.of("ai-service", RateLimiterConfig.custom()
.limitRefreshPeriod(Duration.ofMinutes(1))
.limitForPeriod(1000) // 每分钟1000次调用
.timeoutDuration(Duration.ofSeconds(30))
.build());
}

@Bean
public CircuitBreaker aiServiceCircuitBreaker() {
return CircuitBreaker.of("ai-service", CircuitBreakerConfig.custom()
.failureRateThreshold(50)
.waitDurationInOpenState(Duration.ofSeconds(30))
.slidingWindowSize(100)
.minimumNumberOfCalls(10)
.build());
}
}

@Service
public class ResilientAIService {

private final ChatLanguageModel chatModel;
private final RateLimiter rateLimiter;
private final CircuitBreaker circuitBreaker;

@EventListener
public void handleCircuitBreakerEvent(CircuitBreakerOnStateTransitionEvent event) {
log.warn("熔断器状态变化: {} -> {}",
event.getStateTransition().getFromState(),
event.getStateTransition().getToState());
}

@Async
public CompletableFuture<String> generateWithResilience(String prompt) {
Supplier<String> decoratedSupplier = Decorators.ofSupplier(() ->
chatModel.generate(prompt))
.withRateLimiter(rateLimiter)
.withCircuitBreaker(circuitBreaker)
.withRetry(Retry.ofDefaults("ai-service"))
.withFallback(Arrays.asList(
CallNotPermittedException.class,
CircuitBreakerOpenException.class),
throwable -> "服务暂时不可用,请稍后重试");

return CompletableFuture.supplyAsync(decoratedSupplier);
}
}

第五章:监控与可观测性

5.1 虚拟线程监控指标

虚拟线程的监控需要特殊的指标和工具:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
@Component
@Slf4j
public class VirtualThreadMonitor {

private final MeterRegistry meterRegistry;
private final AtomicLong virtualThreadCount = new AtomicLong(0);

public VirtualThreadMonitor(MeterRegistry meterRegistry) {
this.meterRegistry = meterRegistry;
setupMetrics();
}

private void setupMetrics() {
// 虚拟线程数量监控
Gauge.builder("virtual.threads.active")
.description("当前活跃的虚拟线程数")
.register(meterRegistry, virtualThreadCount, AtomicLong::get);

// JVM堆内存使用
Gauge.builder("jvm.memory.virtual_threads.used")
.description("虚拟线程使用的内存")
.register(meterRegistry, this, this::getVirtualThreadMemoryUsage);
}

@EventListener
public void onThreadEvent(ThreadEvent event) {
switch (event.getType()) {
case CREATED -> {
virtualThreadCount.incrementAndGet();
meterRegistry.counter("virtual.threads.created").increment();
}
case TERMINATED -> {
virtualThreadCount.decrementAndGet();
meterRegistry.counter("virtual.threads.terminated").increment();
}
case BLOCKED -> {
meterRegistry.counter("virtual.threads.blocked").increment();
}
}
}

private double getVirtualThreadMemoryUsage() {
// 估算虚拟线程内存使用(基于活跃线程数 * 每个线程约1KB)
return virtualThreadCount.get() * 1024.0;
}
}

5.2 AI服务性能监控

专门针对AI服务的监控指标:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
@Aspect
@Component
@Slf4j
public class AIServiceMonitoringAspect {

private final MeterRegistry meterRegistry;
private final Timer aiRequestTimer;
private final Counter aiRequestCounter;
private final Counter aiErrorCounter;

public AIServiceMonitoringAspect(MeterRegistry meterRegistry) {
this.meterRegistry = meterRegistry;
this.aiRequestTimer = Timer.builder("ai.requests")
.description("AI请求处理时间")
.register(meterRegistry);
this.aiRequestCounter = Counter.builder("ai.requests.total")
.description("AI请求总数")
.register(meterRegistry);
this.aiErrorCounter = Counter.builder("ai.errors.total")
.description("AI请求错误总数")
.register(meterRegistry);
}

@Around("@annotation(MonitorAI)")
public Object monitorAICall(ProceedingJoinPoint joinPoint) throws Throwable {
Timer.Sample sample = Timer.start(meterRegistry);
aiRequestCounter.increment();

try {
Object result = joinPoint.proceed();
sample.stop(aiRequestTimer);

// 记录token使用情况
if (result instanceof TokenizedResponse response) {
meterRegistry.counter("ai.tokens.input")
.increment(response.getInputTokens());
meterRegistry.counter("ai.tokens.output")
.increment(response.getOutputTokens());

// 计算成本
double cost = calculateCost(response);
meterRegistry.counter("ai.cost.total").increment(cost);
}

return result;
} catch (Exception e) {
aiErrorCounter.increment();
sample.stop(Timer.builder("ai.requests.error")
.register(meterRegistry));
throw e;
}
}

private double calculateCost(TokenizedResponse response) {
// 基于token数量计算成本(示例价格)
double inputCost = response.getInputTokens() * 0.0001; // $0.0001 per 1K tokens
double outputCost = response.getOutputTokens() * 0.0002; // $0.0002 per 1K tokens
return inputCost + outputCost;
}
}

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface MonitorAI {
}

5.3 Grafana监控面板配置

监控面板的关键指标配置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# prometheus.yml配置
scrape_configs:
- job_name: 'spring-boot-ai'
static_configs:
- targets: ['localhost:8080']
metrics_path: '/actuator/prometheus'
scrape_interval: 15s

# Grafana面板查询示例
panels:
- title: "虚拟线程活跃数"
targets:
- expr: virtual_threads_active
legendFormat: "活跃虚拟线程"

- title: "AI请求QPS"
targets:
- expr: rate(ai_requests_total[5m])
legendFormat: "请求/秒"

- title: "AI请求延迟分布"
targets:
- expr: histogram_quantile(0.95, rate(ai_requests_bucket[5m]))
legendFormat: "P95延迟"
- expr: histogram_quantile(0.99, rate(ai_requests_bucket[5m]))
legendFormat: "P99延迟"

- title: "AI成本趋势"
targets:
- expr: increase(ai_cost_total[1h])
legendFormat: "每小时成本($)"

- title: "内存使用情况"
targets:
- expr: jvm_memory_used_bytes{area="heap"}
legendFormat: "堆内存"
- expr: jvm_memory_virtual_threads_used
legendFormat: "虚拟线程内存"

第六章:性能调优与生产部署

6.1 JVM参数优化

针对虚拟线程的JVM调优策略:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# 生产环境JVM参数推荐
JAVA_OPTS="
# 虚拟线程相关
--enable-preview
-Djdk.virtualThreadScheduler.parallelism=16
-Djdk.virtualThreadScheduler.maxPoolSize=256

# 内存配置
-Xms4g -Xmx8g
-XX:MetaspaceSize=256m
-XX:MaxMetaspaceSize=512m
-XX:MaxDirectMemorySize=1g

# GC配置(推荐G1GC或ZGC)
-XX:+UseZGC
-XX:+UnlockExperimentalVMOptions
-XX:MaxGCPauseMillis=200

# 性能监控
-XX:+FlightRecorder
-XX:+UnlockCommercialFeatures
-XX:StartFlightRecording=duration=60s,filename=app.jfr

# 虚拟线程调试
-Djdk.tracePinnedThreads=full
"

6.2 Kubernetes部署配置

完整的Kubernetes部署配置[4]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: ai-agent-service
labels:
app: ai-agent-service
spec:
replicas: 3
selector:
matchLabels:
app: ai-agent-service
template:
metadata:
labels:
app: ai-agent-service
annotations:
prometheus.io/scrape: "true"
prometheus.io/port: "8080"
prometheus.io/path: "/actuator/prometheus"
spec:
containers:
- name: app
image: ai-agent-service:latest
ports:
- containerPort: 8080
env:
- name: JAVA_TOOL_OPTIONS
value: "--enable-preview -Xms2g -Xmx4g -XX:+UseZGC"
- name: SPRING_PROFILES_ACTIVE
value: "production"
- name: THREAD_TYPE
value: "virtual"
resources:
requests:
memory: "2Gi"
cpu: "1000m"
limits:
memory: "4Gi"
cpu: "2000m"
readinessProbe:
httpGet:
path: /actuator/health/readiness
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
livenessProbe:
httpGet:
path: /actuator/health/liveness
port: 8080
initialDelaySeconds: 60
periodSeconds: 30

---
apiVersion: v1
kind: Service
metadata:
name: ai-agent-service
spec:
selector:
app: ai-agent-service
ports:
- port: 80
targetPort: 8080
type: ClusterIP

---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: ai-agent-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: ai-agent-service
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Pods
pods:
metric:
name: ai_requests_per_second
target:
type: AverageValue
averageValue: "100"

6.3 Docker优化配置

多阶段构建优化:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Dockerfile
FROM bellsoft/liberica-openjdk-alpine:21 as builder
WORKDIR /workspace/app

COPY mvnw .
COPY .mvn .mvn
COPY pom.xml .
RUN ./mvnw dependency:go-offline

COPY src src
RUN ./mvnw clean package -DskipTests

FROM bellsoft/liberica-openjdk-alpine:21
RUN apk add --no-cache dumb-init
WORKDIR /app

# 创建非root用户
RUN addgroup -g 1001 -S appgroup && \
adduser -u 1001 -S appuser -G appgroup

# 复制应用
COPY --from=builder --chown=appuser:appgroup /workspace/app/target/*.jar app.jar

# 设置JVM参数
ENV JAVA_OPTS="\
--enable-preview \
-Djava.security.egd=file:/dev/./urandom \
-Dspring.threads.virtual.enabled=true \
-Xms2g -Xmx2g \
-XX:+UseZGC \
-XX:MaxGCPauseMillis=100"

USER appuser
EXPOSE 8080

ENTRYPOINT ["dumb-init", "--"]
CMD ["sh", "-c", "java $JAVA_OPTS -jar app.jar"]

6.4 性能测试与基准测试

使用JMeter进行压力测试:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
<!-- JMeter测试计划 -->
<?xml version="1.0" encoding="UTF-8"?>
<jmeterTestPlan version="1.2">
<hashTree>
<TestPlan guiclass="TestPlanGui" testclass="TestPlan" testname="AI Agent性能测试">
<elementProp name="TestPlan.arguments" elementType="Arguments" guiclass="ArgumentsPanel">
<collectionProp name="Arguments.arguments"/>
</elementProp>
<stringProp name="TestPlan.user_defined_variables"></stringProp>
<boolProp name="TestPlan.serialize_threadgroups">false</boolProp>
</TestPlan>
<hashTree>
<!-- 线程组配置 -->
<ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="Virtual Thread Load Test">
<intProp name="ThreadGroup.num_threads">1000</intProp>
<intProp name="ThreadGroup.ramp_time">60</intProp>
<longProp name="ThreadGroup.duration">300</longProp>
<boolProp name="ThreadGroup.same_user_on_next_iteration">true</boolProp>
</ThreadGroup>
<hashTree>
<!-- HTTP请求 -->
<HTTPSamplerProxy guiclass="HttpTestSampleGui" testclass="HTTPSamplerProxy" testname="AI Chat Request">
<stringProp name="HTTPSampler.domain">localhost</stringProp>
<stringProp name="HTTPSampler.port">8080</stringProp>
<stringProp name="HTTPSampler.path">/ai/chat</stringProp>
<stringProp name="HTTPSampler.method">POST</stringProp>
<boolProp name="HTTPSampler.use_keepalive">true</boolProp>
<elementProp name="HTTPsampler.Arguments" elementType="Arguments">
<collectionProp name="Arguments.arguments">
<elementProp name="" elementType="HTTPArgument">
<boolProp name="HTTPArgument.always_encode">false</boolProp>
<stringProp name="Argument.value">{"prompt": "解释虚拟线程的工作原理"}</stringProp>
<stringProp name="Argument.metadata">=</stringProp>
</elementProp>
</collectionProp>
</elementProp>
<stringProp name="HTTPSampler.postBodyRaw">true</stringProp>
</HTTPSamplerProxy>

<!-- 响应断言 -->
<ResponseAssertion guiclass="AssertionGui" testclass="ResponseAssertion" testname="成功响应断言">
<collectionProp name="Asserion.test_strings">
<stringProp name="49586">200</stringProp>
</collectionProp>
<stringProp name="Assertion.test_field">Assertion.response_code</stringProp>
</ResponseAssertion>
</hashTree>
</hashTree>
</hashTree>
</jmeterTestPlan>

基于真实基准测试的性能对比[4]:

传统线程 vs 虚拟线程性能对比:

配置 内存使用 CPU使用 处理请求数(2分钟) 平均响应时间
标准线程 ~900MB ~1.2 core 135k 175ms
虚拟线程 ~850MB ~1.1 core 135k 180ms
原生+虚拟线程 ~50MB ~1.3 core 100k 240ms

第七章:故障排查与最佳实践

7.1 常见问题与解决方案

问题1:虚拟线程固定(Pinning)

虚拟线程在某些情况下会被”固定”到载体线程上,失去轻量级的优势:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// 问题代码:synchronized块会导致虚拟线程固定
public synchronized String badExample() {
return chatModel.generate("Hello");
}

// 解决方案:使用ReentrantLock
private final ReentrantLock lock = new ReentrantLock();

public String goodExample() {
lock.lock();
try {
return chatModel.generate("Hello");
} finally {
lock.unlock();
}
}

// 监控固定情况
-Djdk.tracePinnedThreads=full

问题2:内存泄漏监控

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
@Component
public class MemoryLeakDetector {

private final MeterRegistry meterRegistry;

@Scheduled(fixedRate = 60000)
public void detectMemoryLeaks() {
Runtime runtime = Runtime.getRuntime();
long totalMemory = runtime.totalMemory();
long freeMemory = runtime.freeMemory();
long usedMemory = totalMemory - freeMemory;

// 记录内存使用趋势
meterRegistry.gauge("memory.used.bytes", usedMemory);
meterRegistry.gauge("memory.free.bytes", freeMemory);

// 检查虚拟线程数量是否异常
ThreadMXBean threadBean = ManagementFactory.getThreadMXBean();
int virtualThreadCount = threadBean.getThreadCount();

if (virtualThreadCount > 100000) { // 阈值告警
log.warn("虚拟线程数量异常: {}", virtualThreadCount);
meterRegistry.counter("virtual.threads.warning").increment();
}
}
}

7.2 生产环境最佳实践

1. 资源限制配置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Configuration
public class ResourceLimitConfig {

@Bean
@ConditionalOnProperty(name = "virtual.threads.enabled", havingValue = "true")
public ThreadPoolTaskExecutor virtualThreadTaskExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
// 虚拟线程环境下的特殊配置
executor.setCorePoolSize(1);
executor.setMaxPoolSize(Integer.MAX_VALUE);
executor.setQueueCapacity(0);
executor.setThreadNamePrefix("vthread-");
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
return executor;
}

@Bean
public Semaphore aiRequestSemaphore(
@Value("${ai.max.concurrent.requests:10000}") int maxRequests) {
return new Semaphore(maxRequests);
}
}

2. 优雅关闭处理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
@Component
@Slf4j
public class GracefulShutdownHandler {

private final ExecutorService executorService;
private volatile boolean shutdown = false;

@PreDestroy
public void gracefulShutdown() {
log.info("开始优雅关闭...");
shutdown = true;

if (executorService != null) {
executorService.shutdown();
try {
if (!executorService.awaitTermination(60, TimeUnit.SECONDS)) {
log.warn("强制关闭虚拟线程池");
executorService.shutdownNow();
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
executorService.shutdownNow();
}
}

log.info("优雅关闭完成");
}

public boolean isShuttingDown() {
return shutdown;
}
}

3. 错误处理与重试机制

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
@Service
public class RobustAIService {

private final ChatLanguageModel chatModel;
private final RetryTemplate retryTemplate;

public RobustAIService(ChatLanguageModel chatModel) {
this.chatModel = chatModel;
this.retryTemplate = RetryTemplate.builder()
.maxAttempts(3)
.exponentialBackoff(1000, 2, 10000)
.retryOn(Exception.class)
.build();
}

@Async
public CompletableFuture<String> generateWithRetry(String prompt) {
return CompletableFuture.supplyAsync(() -> {
return retryTemplate.execute(context -> {
try {
return chatModel.generate(prompt);
} catch (Exception e) {
log.warn("AI调用失败,重试第{}次: {}",
context.getRetryCount() + 1, e.getMessage());

// 记录重试指标
Metrics.counter("ai.retries",
"attempt", String.valueOf(context.getRetryCount()))
.increment();

throw e;
}
});
});
}
}

总结与展望

通过本文的深入探讨,我们展示了Spring Boot 3.5虚拟线程与LangChain4j结合构建大规模AI Agent系统的完整解决方案。虚拟线程的革命性特性——轻量级、高并发、低开销——完美契合了AI应用的I/O密集型特点,使得单个应用实例能够同时处理数百万个AI请求成为可能。

关键收获:

  1. 性能突破:虚拟线程在高并发场景下相比传统线程有2-8倍的性能提升
  2. 架构简化:消除了复杂的线程池管理,代码更加清晰直观
  3. 成本优化:通过缓存、批处理、限流等策略显著降低AI调用成本
  4. 生产就绪:完整的监控、部署、调优解决方案确保系统稳定运行

未来发展趋势:

随着Project Loom的持续演进和AI技术的快速发展,我们可以预期:

  • 结构化并发:Java将引入更强大的并发控制机制
  • AI原生框架:更多专门针对AI工作负载优化的Java框架
  • 边缘AI部署:轻量级虚拟线程使得边缘AI部署更加高效

对于企业而言,现在是拥抱这一技术革新的最佳时机。虚拟线程不仅解决了传统并发模型的痛点,更为构建下一代智能应用奠定了坚实基础。

行动建议:

  1. 评估现有系统:识别I/O密集型和高并发场景的改造机会
  2. 渐进式迁移:从新项目开始,逐步向虚拟线程迁移
  3. 性能基准:建立完整的性能监控和基准测试体系
  4. 团队培训:提升团队对新并发模型的理解和应用能力

虚拟线程的时代已经到来,结合强大的AI能力,Java开发者正站在一个全新的技术起点上。让我们拥抱这个变革,构建更高效、更智能的应用系统。


参考资料

[1] Anmol Sehgal. “Java Virtual Threads Explained: How to Handle a Million Concurrent Tasks Easily” - Medium, 2025

[2] Ali Behzadian. “Java Thread Performance Vs. Virtual Threads Part 2” - Medium, 2024

[3] Spring Team. “Building Effective Agents with Spring AI (Part 1)” - Spring.io Blog, 2025

[4] Piotr Mińkowski. “Native Java with GraalVM and Virtual Threads on Kubernetes” - Personal Blog, 2023

[5] Baeldung Team. “Working with Virtual Threads in Spring” - Baeldung, 2024

[6] LangChain4j Team. “Build AI Apps and Agents in Java: Hands-On with LangChain4j” - JavaPro.io, 2025


本文涵盖了Spring Boot 3.5虚拟线程与LangChain4j集成的完整技术栈,从基础概念到生产部署,为构建大规模AI Agent系统提供了详尽的指导。随着技术的快速发展,建议持续关注官方文档和社区最佳实践的更新。